87,112 research outputs found

    Domain wall switching: optimizing the energy landscape

    Full text link
    It has recently been suggested that exchange spring media offer a way to increase media density without causing thermal instability (superparamagnetism), by using a hard and a soft layer coupled by exchange. Victora has suggested a figure of merit xi = 2 E_b/mu_0 m_s H_sw, the ratio of the energy barrier to that of a Stoner-Wohlfarth system with the same switching field, which is 1 for a Stoner-Wohlfarth (coherently switching) particle and 2 for an optimal two-layer composite medium. A number of theoretical approaches have been used for this problem (e.g., various numbers of coupled Stoner-Wohlfarth layers and continuum micromagnetics). In this paper we show that many of these approaches can be regarded as special cases or approximations to a variational formulation of the problem, in which the energy is minimized for fixed magnetization. The results can be easily visualized in terms of a plot of the energy as a function of magnetic moment m_z, in which both the switching field [the maximum slope of E(m_z)] and the stability (determined by the energy barrier E_b) are geometrically visible. In this formulation we can prove a rigorous limit on the figure of merit xi, which can be no higher than 4. We also show that a quadratic anistropy suggested by Suess et al comes very close to this limit.Comment: Acccepted for proceedings of Jan. 2007 MMM Meeting, paper BE-0

    The breakage prediction for hydromechanical deep drawing based on local bifurcation theory

    Get PDF
    A criterion of sheet metal localized necking under plane stress was established based on the bifurcation theory and the characteristics theory of differential equation. In order to be capable to incorporate the directional dependence of the plastic strain rate on stress rate, Ito-Goya’s constitutive equation which gave a one to one relationship between stress rate component and plastic strain rate component was employed. The hydromechanical deep drawing process of a cylindrical cup part was simulated using the commercial software ABAQUS IMPLICIT. The onset of breakage of the part during the forming process was predicted by combining the simulation results with the local necking criterion. The proposed method is applied to the hydro-mechanical deep drawing process for A2219 aluminum alloy sheet metal to predict the breakage of the cylindrical cup part. The proposed method can be applied to the prediction of breakage in the forming of the automotive bodies

    Effect of Interactions on Molecular Fluxes and Fluctuations in the Transport Across Membrane Channels

    Full text link
    Transport of molecules across membrane channels is investigated theoretically using exactly solvable one-dimensional discrete-state stochastic models. An interaction between molecules and membrane pores is modeled via a set of binding sites with different energies. It is shown that the interaction potential strongly influences the particle currents as well as fluctuations in the number of translocated molecules. For small concentration gradients the attractive sites lead to largest currents and fluctuations, while the repulsive interactions yield the largest fluxes and dispersions for large concentration gradients. Interaction energies that lead to maximal currents and maximal fluctuations are the same only for locally symmetric potentials, while they differ for the locally asymmetric potentials. The conditions for the most optimal translocation transport with maximal current and minimal dispersion are discussed. It is argued that in this case the interaction strength is independent of local symmetry of the potential of mean forces. In addition, the effect of the global asymmetry of the interaction potential is investigated, and it is shown that it also strongly affects the particle translocation dynamics. These phenomena can be explained by analyzing the details of the particle entering and leaving the binding sites in the channel.Comment: submitted to J. Chem. Phy

    The Static Dielectric Constant of a Colloidal Suspension

    Full text link
    We derive an expression for the static dielectric constant of the colloidal susp ensions based on the electrokinetic equations. The analysis assumes that the ions have the same diffusivity, and that the double layer is much thinner than the radius of curvature of the particles. It is shown that the dielectric increment of the double layer polarization mechanism is originated from the free energy stored in the salt concentration inhomogeniety. We also show that the dominant polarization charges in the theory are at the electrodes, rather than close to the particles.Comment: 15 pages, 1 figur

    Intersecting non-SUSY pp-brane with chargeless 0-brane as black pp-brane

    Get PDF
    Unlike BPS pp-brane, non-supersymmetric (non-susy) pp-brane could be either charged or chargeless. As envisaged in [hep-th/0503007], we construct an intersecting non-susy pp-brane with chargeless non-susy qq-brane by taking T-dualities along the delocalized directions of the non-susy qq-brane solution delocalized in (p−q)(p-q) transverse directions (where p≥qp\geq q). In general these solutions are characterized by four independent parameters. We show that when q=0q=0 the intersecting charged as well as chargeless non-susy pp-brane with chargeless 0-brane can be mapped by a coordinate transformation to black pp-brane when two of the four parameters characterizing the solution take some special values. For definiteness we restrict our discussion to space-time dimensions d=10d=10. We observe that parameters characterizing the black brane and the related dynamics are in general in a different branch of the parameter space from those describing the brane-antibrane annihilation process. We demonstrate this in the two examples, namely, the non-susy D0-brane and the intersecting non-susy D4 and D0-branes, where the solutions with the explicit microscopic descriptions are known.Comment: 25 page
    • …
    corecore